Development of Automated Patch Clamp Technique to Investigate CFTR Chloride Channel Function
نویسندگان
چکیده
The chloride (Cl-) channel cystic fibrosis transmembrane conductance regulator (CFTR) is defective in cystic fibrosis (CF), and mutation of its encoding gene leads to various defects such as retention of the misfolded protein in the endoplasmic reticulum, reduced stability at the plasma membrane, abnormal channel gating with low open probability, and thermal instability, which leads to inactivation of the channel at physiological temperature. Pharmacotherapy is one major therapeutic approach in the CF field and needs sensible and fast tools to identify promising compounds. The high throughput screening assays available are often fast and sensible techniques but with lack of specificity. Few works used automated patch clamp (APC) for CFTR recording, and none have compared conventional and planar techniques and demonstrated their capabilities for different types of experiments. In this study, we evaluated the use of planar parallel APC technique for pharmacological search of CFTR-trafficking correctors and CFTR function modulators. Using optimized conditions, we recorded both wt- and corrected F508del-CFTR Cl- currents with automated whole-cell patch clamp and compared the data to results obtained with conventional manual whole-cell patch clamp. We found no significant difference in patch clamp parameters such as cell capacitance and series resistance between automated and manual patch clamp. Also, the results showed good similarities of CFTR currents recording between the two methods. We showed that similar stimulation protocols could be used in both manual and automatic techniques allowing precise control of temperature, classic I/V relationship, and monitoring of current stability in time. In conclusion, parallel patch-clamp recording allows rapid and efficient investigation of CFTR currents with a variety of tests available and could be considered as new tool for medium throughput screening in CF pharmacotherapy.
منابع مشابه
Regulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1
Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...
متن کاملPotentiation of ΔF508- and G551D-CFTR-Mediated Cl- Current by Novel Hydroxypyrazolines
The most common mutation of CFTR, affecting approximately 90% of CF patients, is a deletion of phenylalanine at position 508 (F508del, ΔF508). Misfolding of ΔF508-CFTR impairs both its trafficking to the plasma membrane and its chloride channel activity. To identify small molecules that can restore channel activity of ΔF508-CFTR, we synthesized and evaluated eighteen novel hydroxypyrazoline ana...
متن کاملActivation of a CFTR-mediated chloride current in a rabbit corneal epithelial cell line.
PURPOSE To determine whether there is gene expression and functional activity of cystic fibrosis transmembrane conductance regulator protein (CFTR) in an SV40-immortalized rabbit corneal epithelial cell line, tRCE. METHODS Both whole-cell and cell-attached patch-clamp techniques were used to examine the biophysical characteristics of the cAMP-dependent chloride current. The molecular identity...
متن کاملRevisiting CFTR inhibition: a comparative study of CFTRinh-172 and GlyH-101 inhibitors
BACKGROUND AND PURPOSE For decades, inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel have been used as tools to investigate the role and function of CFTR conductance in cystic fibrosis research. In the early 2000s, two new and potent inhibitors of CFTR, CFTRinh -172 and GlyH-101, were described and are now widely used to inhibit specifically CFTR. Ho...
متن کاملNon-specific activation of the epithelial sodium channel by the CFTR chloride channel.
The genetic disease cystic fibrosis is caused by mutation of the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). Controversial studies reported regulation of the epithelial sodium channel (ENaC) by CFTR. We found that uptake of (22)Na(+) through ENaC is modulated by activation of CFTR in oocytes, coexpressing CFTR and ENaC, depending on extracellular chloride con...
متن کامل